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• Integrability & inequalities. A continuous function on a
closed interval is integrable. Integrability on [a,b] implies
integrability on closed subintervals of [a,b]. Assuming f is
integrable, if L≤ f (x)≤M for all x in [a,b], then

Use this to check integral evaluations with rough
overestimates or underestimates.

If f is nonnegative, then is nonnegative.

If f is integrable on [a,b], then so is f, and

• Fundamental theorem of calculus. One part of the
theorem is used to evaluate integrals: If f is continuous on
[a,b], and A is an antiderivative of f on that interval, then

The other part is used to construct antiderivatives:
If f is continuous on [a,b], then the function

is an antiderivative of f on [a,b]:A x f t dt
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THEORY

• Heuristics. The definite integral captures the idea of
adding the values of a function over a continuum.

• Riemann sum. A suitably weighted sum of values. A
definite integral is the limiting value of such sums. A
Riemann sum of a function f defined on [a,b] is
determined by a partition, which is a finite division of
[a,b] into subintervals, typically expressed by
a=x0<x1···< xn= b; and a sampling of points, one point
from each subinterval, say ci from [xi–1, xi ]. The associated

Riemann sum is: 

A regular partition has subintervals all the same length,
∆x = (b–a) /n, xi = a+i∆x. A partition’s norm is its
maximum subinterval length. A left sum takes the left
endpoint ci= xi–1 of each subinterval; a right sum, the
right endpoint. An upper sum of a continuous f takes a
point ci in each subinterval where the maximum value of f
is achieved; a lower sum, the minimum value. E.g., the
upper Riemann sum of cosx on [0,3] with a regular
partition of n intervals is the left sum (since the cosine is

decreasing on the interval): 

• Definite integral. The definite integral of f from a to b

may be described as 

The limit is said to exist if some number S (to be called the
integral) satisfies the following: Every εε > 0 admits a δδ
such that all Riemann sums on partitions of [a,b] with
norm less than δδ differ from S by less than εε . If there is
such a value S, the function is said to be integrable and the

value is denoted or . The function must be

bounded to be integrable. The function f is called the
integrand and the points a and b are called the lower limit
and upper limit of integration, respectively. The word

integral refers to the formation of from f and [a,b], as

well as to the resulting value if there is one.
• Antiderivative. An antiderivative of a function f is a
function A whose derivative is f : A' (x)= f (x) for all x in
some domain (usually an interval). Any two antiderivatives
of a function on an interval differ by a constant (a
consequence of the Mean Value Theorem). E.g., both

and are antiderivatives of x–a ,

differing by . The indefinite integral of a function f,

denoted , is an expression for the family of

antiderivatives on a typical (often unspecified)
interval. E.g., (for x < –1, or for x >1). 

The constant C, which may have any real value, is the
constant of integration. (Computer programs, and this
chart, may omit the constant, it being understood by the
knowledgeable user that the given antiderivative is just one
representative of a family.)
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A' (x)= f (x) (valid for one-sided derivatives at the
endpoints).

• Differentiation of integrals. Functions are often defined
as integrals. E.g., the “sine integral function” is

To differentiate such, use the second part of the
fundamental theorem: Si'(x) = sin x /x. A function

such as is a composition involving

To differentiate, use the chain rule

and the fundamental theorem:

• Mean value theorem for integrals. If f and g are
continuous on [a,b], then there is a ξξ in [a,b] such that

In the case g ≡ 1, the average value of f is attained

somewhere on the interval: 

• Change of variable formula. An integrand and limits of
integration can be changed to make an integral easier to
apprehend or evaluate. In effect, the “area” is smoothly
redistributed without changing the integral’s value. If g is
a function with continuous derivative and f is continuous,

then where c,d are

points with g (c)= a and g (d )=b.
In practice, substitute u=g (t); compute du=g'(t)dt; and
find what t is when u=a and u=b. E.g., u=sin t effects the

transformation 

which becomes since 

for The formula is often used in reverse,

starting with See Techniques on pg. 2.

• Natural logarithm. A rigorous definition is ln x =

The change of variable formula with u=1/t

yields = = showing that

ln(1/x) = – ln x. The other elementary properties of the
natural log can likewise be easily derived from this
definition. In this approach, an inverse function is deduced
and is defined to be the natural exponential function.
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POWER SERIES
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• Power series. A power series in x is a sequence of

polynomials in x of the form 

The power series is denoted 

A power series in x–c (or “centered at c” or “about c”) is written

Replacing x with a real number q in a power series yields
a series of real numbers. A power series converges at q if
the resulting series of real numbers converges.

• Interval of convergence. The set of real numbers at which
a power series converges is an interval, called the interval
of convergence, or a point. If the power series is centered
at c, this set is either (i) (–∞∞,∞∞); (ii) (c–R, c+R) for some
R>0, possibly together with one or both endpoints; or (iii)
the point c alone. In case (ii), R is called the radius of
convergence of the power series, which may be ∞∞ and 0
for cases (i) and (iii), respectively. Convergence is absolute
for |x–c|< R. You can often determine a radius of
convergence by solving the inequality that puts the ratio
(or root) test limit less than 1. E.g., for

which, with the ratio test, shows that the radius of
convergence is 2.

• Geometric power series. A power series determines a
function on its interval of convergence:

One says the series converges

to the function. The series i.e., the sequence of

polynomials =1+x+x2+…+xN=

converges for x in the interval (–1,1) to 1/(1–x) and

diverges otherwise. That is, Other

geometric series may be identified through this basic one. 

E.g., for

|x /3|<1. The interval of convergence is (–3,3).
• Calculus of power series. Consider a function given by a
power series centered at c with radius of convergence R:

Such a function is differentiable on (c–R, c+R), and its

derivative there is 

The differentiated series has radius of convergence R, but
may diverge at an endpoint where the original converged.
Such a function is integrable on (c – R, c + R), and its
integral vanishing at c is:

f t dt
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INTERPRETATIONS
• Area under a curve. If f is nonnegative and continuous on

[a,b], then gives the area between the x-axis

and the graph. The area function gives

the area accumulated up to x. If f is negative, the integral
is the negative of the area.

• Average value. The average value of f over an interval [a,b]

may be defined by average value = 

A rough estimate of an integral may be made by estimating
the average value (by inspecting the graph) and
multiplying it by the length of the interval. (See Mean
Value Theorem (MVT) for integrals, in the Theory section.)

• Accumulated change. The integral of a rate of change of
a quantity over a time interval gives the total change in the
quantity over the time interval. E.g., if v(t)=s'(t) is a
velocity (the rate of change of position), then v(t)∆ t is the
approximate displacement occurring in the time increment
t to t+∆ t ; adding the displacements for all time increments
gives the approximate change in position over the entire
time interval. In the limit of small time increments, one

gets the exact total displacement: s(b)–s(a).

• Integral curve. Imagine that a function f determines a
slope f (x) for each x. Placing line segments with slope
f (x) at points (x, y) for various y, and doing this for various
x, one gets a slope field. An antiderivative of f is a function
whose graph is tangent to the slope field at each point. The
graph of the antiderivative is called an integral curve of
the slope field.

• Solution to initial value problem. The solution to the
differential equation y' =f (x) with initial value y(x0)=y0 is

x y f t dt.
x
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CONVERGENCE TESTS
• Basic considerations. For any K, if converges, then

converges, and conversely. If then 

diverges. (Equivalently, if converges, then an→→0). This

says nothing about, e.g., A series of positive terms is

an increasing sequence of partial sums; if the sequence of
partial sums is bounded, the series converges. This is the
foundation of all the following criteria for convergence.

• Integral test & estimate. Assume f is continuous,

positive, and decreasing on (K,∞∞). Then converges

if and only if converges. If the series

converges, then the

right side overestimating the sum with error less than

=1.2018..., the left side

underestimating  the sum with error less than f (N+1).

E.g., ≈ + = 1.2018..., an

underestimate with error <13–3<5•10– 4.

• Absolute convergence. If converges, that is, if

{converges absolutely}, then converges, and

A series converges conditionally if it

converges, but not absolutely.
• Comparison tests. Assume an, bn>0.

- If converges and either an£bn(n≥ N ) or an/ bn
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- If diverges and either bn£an(n≥ N ) or an/bn has

a nonzero limit (or approaches ∞∞), then diverges.
The p-series and geometric series are often used for
comparisons. Try a “limit” comparison when a series
looks like a p-series, but is not directly comparable to it.

E.g., converges since

• Ratio & root tests. Assume an≠ 0.

If then converges

(absolutely). If then

diverges. These tests are derived by comparison with
geometric series. The following are useful in applying the

root test: (any p) and More
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An equation such as means the series converges

and its sum is S. In general statements, may stand for

• Geometric series. A (numerical) geometric series has the

form where r is a real number and a≠0. A key identity

is 1+r+r2+...+rN= It implies

and

that the series diverges if |r|>1. The series diverges if
r=± 1. The convergence and possible sum of any geometric
series can be determined using the preceding formula.

E.g., 

• p-series. For p, a real number, is called the p-series.

The p-series diverges if p≤1 and converges if p>1 (by
comparison with harmonic series and the integral test,

below). The harmonic series diverges, for the partial

sums are unbounded: 

• Alternating series. These are series whose terms alternate
in (nonzero) sign. If the terms of an alternating series
strictly decrease in absolute value and approach a limit of
zero, then the series converges. Moreover, the truncation
error is less than the absolute value of the first omitted

term: (assuming

an→→0 in a strictly decreasing manner).
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The integrated series has radius of convergence R, and may
converge at an endpoint where the original diverged.

E.g., 

The initial (geometric) series converges on (–1,1), and the
integrated series converges on (1,–1). The integration says

for |x|<1; a remainder

argument (see below) implies equality for x =1.
• Taylor and MacLaurin series. The Taylor series
about c of an infinitely differentiable function f is

f (c) + f '(c)(x – c) +

If c =0, it is also called a MacLaurin series. The Taylor
series at x may converge without converging to f (x). It
converges to f (x) if the remainder in Taylor’s formula,

(ξξ between c and x,

ξξ varying with x and n), approaches 0 as n→→∞∞. E.g., the
remainders at x =1 for the MacLaurin polynomials of
ln(1+ x) (in Taylor’s formula above) satisfy

so ln2=

• Computing Taylor series. If R > 0 and

f(x)= then the coefficients are

necessarily the Taylor coefficients: an= f (n)(c) / n!. This
means Taylor series may be found other than by directly
computing coefficients. Differentiating the geometric

series gives 

• Basic MacLaurin series:

=1+x+x2+ ...=

ln(1+x)=x– + – ...=

arctan x=x–

The following hold for all real x:

• Binomial series. For p≠ 0, and for |x|<1,

The binomial coefficients are 

and (“p choose k ”)

If p is a positive integer, =0 for k>p.
k

pe o
!k

p p p p k1 2 1

k

p g
=

- - - +e ^ ^ ^o h h h
p p

2
1

,
-^ h

p

2
=e op,

p

1

=e o1,
p

0

=e o
!

x px
p p

x x1 1
2

1
.

k

p

n

kp 2

0

g+ = + +
-

+ =
3

=

] ^ eg h o/

! ! !
sin x x x x

n
x

3 5 2 1
1 n n

n

3 5 2 1

0

g= - + - =
+

-3 +

= ]] gg/

! ! !
cos x x x x

n
x1

2 4 2
1 n n

n

2 4 2

0

g= - + + - = -3

= ]] gg/

! ! !
e x x x

n
x1

2 3
x

n

n

2 3

0

g= + + + + =
3

=

/

x 1#^ h1
2 1

x x
n

x
3 5

n
n

n

3 5 2 1

0

g=+ - -
+

3 +

=

] g/

x 1<^ h
1
1

2 1
ln

x
x x x x

n
x2

3 5
2

2 1n

n

3 5

0

g= =
-
+

+ + +
+

3 +

=

c m /

n
x x1 1 1n

n

n

1

1

1 #- -
3

+

=

] ]]g gg/x
3

3x
2

2

x 1<^ hxn

n 0

3

=

/
x1

1
-

x 1 .<^ h
1

1
x

nx n x1 n

n n

n
2

1

1 0

= =
-

+
3 3

-

= =] ]g g/ /

a x c x c R ,<n
n

n 0

- -
3

=

] ^g h/

n
1 .

n

n

1

1

-
3 +

=

] g/
1 1 1

R
n n

1 1 1 0,n n 1 "#
p

=
+ + ++

] ] _g g i

!
R x

n
f x c

1
1

n
n n1 1

:p=
+

-+ +] ] _ ]] ]g g i gg g

!
f c

x c
2

.2 g- +
ll] ]g g

!k
f c

x c
k

k

k 0

=-
3

=

] ]] g gg
/

ln x n
x1 1 n

n

n

1

1

+ = -
3

+

=

] ]g g/

x
x x

x
x x

1
1 1

1
1 1implies .2 2g g

+
= - +

+
= - +

Calculus 2.qxd  12/6/07  1:46 PM  Page 1



3

INTEGRATION FORMULAS

GEOMETRY

IMPROPER INTEGRALS

APPLICATIONS

2

APPROXIMATIONS

TECHNIQUES

• General notes. Solutions to applied problems often
involve definite integrals that cannot be evaluated easily, if
at all, by finding antiderivatives. Readily available
software using refined algorithms can evaluate many
integrals to needed precision. The following methods for

approximating are elementary. Throughout, n is

the number of intervals in the underlying regular partition
and h=(b–a) /n.

• Trapezoid rule. The line connecting two points on the
graph of a positive function together with the underlying
interval on the x axis form a trapezoid whose area is the
average of the two function values times the length of the
interval. Adding these areas up over a regular partition
gives the trapezoid rule approximation

f x dx
b

a ] g#

NUMERICAL INTEGRATION

SEQUENCES
• Sequences. Sequences are functions whose domains
consist of all integers greater than or equal to some initial
integer, usually 0 or 1. The integer in a sequence at n is
usually denoted with a subscripted symbol like an (rather
than with a functional notation a(n)) and is called a term
of the sequence. A sequence is often referred to with an
expression for its terms, e.g., 1/n (with the domain
understood), in lieu of a fuller notation like:

• Elementary sequences. An arithmetic sequence an has a
common difference d between successive values:
an=an–1+d=a0+d ·n. It is a sequential version of a linear
function, the common difference in the role of slope. A
geometric sequence, with terms gn, has a common ratio r

between successive values: gn= gn-1r=g0r n. E.g., 5.0, 2.5,
1.25, 0.625, 0.3125, .... It is a sequential version of an
exponential function, the common ratio in the role of base.

• Convergence. A sequence {an} converges if some number
L (called the limit) satisfies the following: Every εε > 0
admits an N such that |an– L|< εε for all n≥ N. If a limit L
exists, there is only one; one says {an}converges to L, and
writes an→L, or If a sequence does not

converge, it diverges. If a sequence an diverges in such a
way that every M>0 admits an N such that an>M for all

n≥ N, then one writes an→∞∞. E.g., if |r |<1 then r n→→0; if
r =1 then r n→→1; otherwise rn diverges, and if r>1, rn→∞.

• Bounded monotone sequences. An increasing sequence
that is bounded above converges (to a limit less than or
equal to any bound). This is a fundamental fact about the
real numbers, and is basic to series convergence tests.
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SEQUENCES & SERIES

• Motion in one dimension. Suppose a variable
displacement x (t) along a line has velocity v(t)=x'(t) and
acceleration a(t)=v'(t). Since v is an antiderivative of a,
the fundamental theorem implies: v(t) = v (t0) +

E.g., the height x (t)

of an object thrown at time t0=0 from a height x (0) = x0

with a vertical velocity v(0)=v0 undergoes the acceleration

–g due to gravity. Thus v(t) = v(v0) + = v0–gt

and x(t) = x0 + = x0 + v0t–

• Work. If F(x) is a variable force acting along a line
parametrized by x, the approximate work done over a small
displacement ∆x at x is ∆W = F(x)∆x (force times
displacement), and the work done over an interval [a,b] is

In a fluid lifting problem, often ∆W = ∆F•h( y), where
h( y) is the lifting height for the “slab” of fluid at y with
cross-sectional area A( y) and width ∆y, and the slab’s
weight is ∆F=ρρA( y)∆y, ρρ being the fluid’s weight-density.

Then W A y h y dy.
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SERIES OF REAL NUMBERS
• Series. A series is a sequence obtained by adding the

values of another sequence a0+...+aN. The value

of the series at N is the sum of values up to aN and is called

a partial sum: =a0+...+aN. The series itself is

denoted The an are called the terms of the series.

• Convergence. A series converges if the sequence of

partial sums converges, in which case the limit of the
sequence of partial sums is called the sum of the series.
If the series converges, the notation for the series itself

stands also for its sum: lima a .n
n N
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• Arc length. A graph y=f (x) between x=a and x=b has length

A curve C parametrized by ((x(t),

y(t)), a≤t≤b, has length 

• Area of a surface of revolution. The surface generated by
revolving a graph y =f(x) between x=a and x=b about the

x-axis has area If the

generating curve C is parametrized by ((x (t), y(t)),
a≤ t≤b, and is revolved about the x axis, the area is

¹ ¹yds y t x t y t dt2 2 .
a

b

C

2 2= +l l] ] ]g g g##

¹ f x f x dx2 1 .
b

a 2+ l] ]g g#

ds x t y d t dt .
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C

2 2= +l l] ]g g##

V f x dx1 .
a

b 2= + l ] g#

• Substitution. Refers to the Change of variable formula
(see the Theory section), but often the formula is used in
reverse. For an integral recognized to have the form

(with F and g' continuous), you can put

u=g (x), du=g'(x)dx, and modify the limits of integration

appropriately: 

In effect, the integral is over a path on the u-axis traced out
by the function g. (If g (b) = g (a) [the path returns to its
start], then the integral is zero.) E.g., u=1+x2 yields

Substitution may be used for indefinite integrals.

E.g., 

Some general formulas are:

• Integration by parts. Explicitly,

The common formula is 

For indefinite integration, 

The procedure is used in derivations where the functions
are general, as well as in explicit integrations. You don’t
need to use “u” and “v.” View the integrand as a product
with one factor to be integrated and the other to be
differentiated; the integral is the integrated factor times the
one to be differentiated, minus the integral of the product
of the two new quantities. The factor to be integrated may
be 1 (giving v=x).

E.g., arctan arctanx dx x x
x

x dx
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• Areas of plane regions. Consider a plane region admitting
an axis such that sections perpendicular to the axis vary in
length according to a known function L(p), a≤ p≤ b. The
area of a strip of width ∆p perpendicular to the axis at p is

∆A=L( p)∆p, and the total area is E.g.,

the area of the region bounded by the graphs of f and g

over [a,b] is , provided g (x)≥ f (x) on

[a,b]. Sometimes it is simpler to view a region as bounded
by two graphs “over” the y-axis, in which case the
integration variable is y.

• Volumes of solids.
Consider a solid
admitting an axis such
that cross-sections
perpendicular to the
axis vary in area
according to a known
function A( p), a≤ p≤b.
The volume of a slab of
thickness ∆p perpendicular to the axis at p is ∆V = A( p)∆p,

and the total volume is E.g., a pyramid

having square horizontal cross-sections, with bottom side
length s and height h, has cross-sectional area
A(z)= [s (1– z /h)]2 at height z. Its volume is thus

• Solids of revolution. Consider a solid of revolution
determined by a known radius function r(z), a≤ z≤ b, along
its axis of revolution. The area of the cross-sectional
“disk” at z is A(z)= ππ r(z)2, and the volume is

If the solid lies between two radii r1(z) and r2(z) at each

point z along the axis of revolution, the cross-sections

are “washers,” and the volume is the obvious

difference of volumes like that above. Sometimes

a radial coordinate r, a≤ r≤ b, along an axis

perpendicular to the axis of revolution,

parametrizes the heights h (r) of cylindrical

sections (shells) of the solid parallel to the axis of

revolution. In this case, the area of the shell at r is

A(r)=2ππ r h(r), and the volume of the solid is

¹V A r dr rh r dr2 .
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• Basic indefinite integrals. Each formula gives just one
antiderivative (all others differing by a constant from that
given), and is valid on any open interval where the
integrand is defined:

• Further indefinite integrals. The above conventions hold:

(take positive values for cosh-1)

(Take same sign, + or –, throughout)

• Common definite integrals:

To remember which of 1/2 (1± cos 2θθ) equals cos2θθ or
sin2θθ, recall the value at zero.
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converges for p <1, diverges otherwise.

converges for p > 1, diverges otherwise.

Note: p >1 converges at

x=∞∞, p =0 or <1 diverges at x=∞∞.

E.g., converges to 1 and diverges.

The above integrals are useful in comparisons to
establish convergence (or divergence) and to get bounds.

E.g., converges since the integrand is

bounded by 1/23/2} on [0,1] and is always less than 1/x3/2.
It converges to a number less than

.
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• Unbounded limits. If f is defined on [a,∞∞] and integrable

on [a,B ] for all B> a, then 

provided the limit exists.

E.g., 

Likewise, for appropriate f, 

In each case, if the limit exists, the improper integral
converges, and otherwise it diverges. For f defined on
(– ∞∞, ∞∞) and integrable on every bounded interval,

(the

choice of c being arbitrary), provided each integral on the
right converges.

• Singular integrands. If f is defined on (a,b ] but not at
x = a and is integrable on closed subintervals of (a,b ], then

provided the limit exists. A

similar definition holds if the integrand is defined on

[a,b). E.g., is 

If f is not defined at a finite number of points in an interval
[a,b], and is integrable on closed subintervals of open

intervals between such points, the integral is defined

as a sum of left and right-hand limits of integrals over
appropriate closed subintervals, provided all the limits exist.

E.g., if the

limits on the right were to exist. They don’t, so the integral
diverges.

• Examples & bounds.

converges for p >1, diverges otherwise.
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Other routine integration-by-parts integrands are arcsin x,
ln x, xn ln x, x sin x, x cos x, and xeax.

• Rational functions. Every rational function may be
written as a polynomial plus a proper rational function
(degree of numerator less than degree of denominator). A
proper rational function with real coefficients has a partial
fraction decomposition: It can be written as a sum with
each summand being either a constant over a power of a
linear polynomial or a linear polynomial over a power of a
quadratic. A factor (x–c)k in the denominator of the
rational function implies there could be summands

A factor (x2+bx+c)k (the quadratic not having real roots)
in the denominator implies there could be summands

Math software can handle the work, but the following case

should be familiar. If a ≠ b, 

where C, D are seen to be 

Thus 

In general, the indefinite integral of a proper rational function
can be broken down via partial fraction decomposition and
linear substitutions (of form u = ax+b) into the integrals

(handled with

substitution w = u2+1), and (handled with

substitution u = tan t ).
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• Examples. A differential equation (DE) was solved in the
item Solution to initial value problem; an example of that
type is in Motion in one dimension. In those, the expression
for the derivative involved only the independent variable. A
basic DE involving the dependent variable is y' =ky. A
general DE where only the first–order derivative appears
and is linear in the dependent variable is y'+ p(t) y = q(t).
Generally more difficult are equations in which the
independent variable appears in a \hlt{nonlinear} way;
e.g., y'= y2– x. Common in applications are second-order
DEs that are linear in the dependent variable; e.g.,
y'' = –ky, x2y'' + xy'+x2y = 0.

• Solutions. A solution of a DE on an interval is a function
that is differentiable to the order of the DE and satisfies the
equation on the interval. It is a general solution if it
describes virtually all solutions, if not all. A general
solution to an nth order DE generally involves n constants,
each admitting a range of real values. An initial value
problem (IVP) for an nth order DE includes a specification
of the solution’s value and n–1 derivatives at some point.
Generally in applications, an IVP has a unique solution on
some interval containing the initial value point.

• Basic first-order linear DE. The equation y'=ky,

rewritten suggests =kdt where =kt+c. In

this way, one finds a solution y=Cekt. On any open
interval, every solution must have that form, because

y'=ky implies where ye–kt is constant on the

interval. Thus y=Cek t (C real) is the general solution. The
unique solution with y(a)= ya is y=yaek (t–a). The trivial
solution is y≡0, solving any IVP y(a)=0.

• General first-order linear DE. Consider
y'+p(t)y =q(t ). The solution to the associated
homogeneous equation h'+p(t)h=0(dh/h = –p(t)dt)

with h(a)=1 is 

If y is a solution to the original DE, then (y/h)' =q/h,

where The solution with y (a)=ya is

y(t)=Ya+ q u h u du .
a

t 1- -] ]g g; E#
/y h q h.= #

exph t p u du .
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t
= -] ]g g; E#
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d ye ,kt-^ h

yy
dy
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dy
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• Taylor polynomials. The nth degree Taylor polynomial of

f at c is Pn(x) = f (c) + f '(c) (x–c) + f ''(c) (x–c)2 +...+

f (n)(c)(x–c)n (provided the derivatives exist). When

c=0, it’s also called a MacLaurin polynomial.
• Taylor’s formula. Assume f has n+1 continuous
derivatives on open interval and that c is a point in the
interval. Then for any x in the interval, f (x)= Pn(x)+Rn(x) ,

where Rn(x) = • (x–c)n+1 for some ξξ

between c and x (ξξ varying with x). The expression for
Rn(x) is called the Lagrange form of the remainder. E.g.,
the remainders for the MacLaurin polynomials of f (x) =

ln(1+x), –1<x<1, are Rn(x) = • xn+1.

There is a ξξ between 0 and x such that ln(1 + x) =

• Error bounds. As x approaches c, the remainder generally
becomes smaller, and a given Taylor polynomial provides a
better approximation of the function value. With the

assumptions and notation above, if is bounded

by M on the interval, then 

≤ for all x in the interval. E.g., for |x|<1,

ex≈1+x+x2/ 2, with error no more than 

because the third derivative of ex is bounded by 3 on (–1,1).
• Big O notation. The statement f (x)=p(x)+O(xm)

(as x→→0 ) means that is bounded near x=0.

(Some authors require that the limit of this ratio as x
approaches 0 exist.) That is, f (x)–p (x) approaches 0 at
essentially the same rate as xm. E.g., Taylor’s formula

implies f (x)=f (0)≠f ' (0)x+ f ''(0)x2+O (x3) if f has

continuous third derivative on an open interval containing
0. E.g., sinx =x+O(x3). [Similar relations can be inferred
from the identities in the item Basic MacLaurin Series.]

• L’Hôpital’s rule. This resolves indeterminate ratios or

If = 0 = and if = 0

= are defined and g(x)≠0, for x near a (but not

necessarily at a), then provided

the latter limit exists, or is infinite. The rule also holds
when the limits of f and g are infinite. Note that f '(a) and
g'(a) are not required to exist. To resolve an indeterminate
difference (∞∞ – ∞∞), try to rewrite it as an indeterminate
ratio and apply L’Hôpital’s rule. To resolve an
indeterminate exponential (00,1∞∞,or ∞∞0), take its logarithm
to get a product and rewrite this as a suitable indeterminate
ratio; apply L’Hôpital’s rule; the exponential of the result
resolves the original indeterminate exponential.
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TAYLOR’S FORMULA

This is also the

average of the left sum and right sum for the given partition.
The approximation remains valid if f is not positive.

• Midpoint rule. This evaluates the Riemann sum on a
regular partition with the sampling given by the midpoints

of each interval: Each

summand is the area of a trapezoid whose top is the
tangent line segment through the midpoint.

• Simpson’s rule. The weighted sum on the

interval [a, b] yields Simpson’s rule

This is also the integral of the
quadratic that interpolates the
function at the three points. For
a regular partition of [a, b] into
an even number n=2m of
intervals, a formula is:

S2m= + +[2i+1]h+ (a+2i•h)+

where h = (b – a)/n. Simpson’s rule is exact on cubics.
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INTEGRATION FORMULAS

GEOMETRY

IMPROPER INTEGRALS

APPLICATIONS

2

APPROXIMATIONS

TECHNIQUES

• General notes. Solutions to applied problems often
involve definite integrals that cannot be evaluated easily, if
at all, by finding antiderivatives. Readily available
software using refined algorithms can evaluate many
integrals to needed precision. The following methods for

approximating are elementary. Throughout, n is

the number of intervals in the underlying regular partition
and h=(b–a) /n.

• Trapezoid rule. The line connecting two points on the
graph of a positive function together with the underlying
interval on the x axis form a trapezoid whose area is the
average of the two function values times the length of the
interval. Adding these areas up over a regular partition
gives the trapezoid rule approximation

f x dx
b

a ] g#

NUMERICAL INTEGRATION

SEQUENCES
• Sequences. Sequences are functions whose domains
consist of all integers greater than or equal to some initial
integer, usually 0 or 1. The integer in a sequence at n is
usually denoted with a subscripted symbol like an (rather
than with a functional notation a(n)) and is called a term
of the sequence. A sequence is often referred to with an
expression for its terms, e.g., 1/n (with the domain
understood), in lieu of a fuller notation like:

• Elementary sequences. An arithmetic sequence an has a
common difference d between successive values:
an=an–1+d=a0+d ·n. It is a sequential version of a linear
function, the common difference in the role of slope. A
geometric sequence, with terms gn, has a common ratio r

between successive values: gn= gn-1r=g0r n. E.g., 5.0, 2.5,
1.25, 0.625, 0.3125, .... It is a sequential version of an
exponential function, the common ratio in the role of base.

• Convergence. A sequence {an} converges if some number
L (called the limit) satisfies the following: Every εε > 0
admits an N such that |an– L|< εε for all n≥ N. If a limit L
exists, there is only one; one says {an}converges to L, and
writes an→L, or If a sequence does not

converge, it diverges. If a sequence an diverges in such a
way that every M>0 admits an N such that an>M for all

n≥ N, then one writes an→∞∞. E.g., if |r |<1 then r n→→0; if
r =1 then r n→→1; otherwise rn diverges, and if r>1, rn→∞.

• Bounded monotone sequences. An increasing sequence
that is bounded above converges (to a limit less than or
equal to any bound). This is a fundamental fact about the
real numbers, and is basic to series convergence tests.

lim a L.
n

n=
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"/ /n n n n1 1 1 2, or , , .
n 1
3 f; =
=

^ h" ,

SEQUENCES & SERIES

• Motion in one dimension. Suppose a variable
displacement x (t) along a line has velocity v(t)=x'(t) and
acceleration a(t)=v'(t). Since v is an antiderivative of a,
the fundamental theorem implies: v(t) = v (t0) +

E.g., the height x (t)

of an object thrown at time t0=0 from a height x (0) = x0

with a vertical velocity v(0)=v0 undergoes the acceleration

–g due to gravity. Thus v(t) = v(v0) + = v0–gt

and x(t) = x0 + = x0 + v0t–

• Work. If F(x) is a variable force acting along a line
parametrized by x, the approximate work done over a small
displacement ∆x at x is ∆W = F(x)∆x (force times
displacement), and the work done over an interval [a,b] is

In a fluid lifting problem, often ∆W = ∆F•h( y), where
h( y) is the lifting height for the “slab” of fluid at y with
cross-sectional area A( y) and width ∆y, and the slab’s
weight is ∆F=ρρA( y)∆y, ρρ being the fluid’s weight-density.

Then W A y h y dy.
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SERIES OF REAL NUMBERS
• Series. A series is a sequence obtained by adding the

values of another sequence a0+...+aN. The value

of the series at N is the sum of values up to aN and is called

a partial sum: =a0+...+aN. The series itself is

denoted The an are called the terms of the series.

• Convergence. A series converges if the sequence of

partial sums converges, in which case the limit of the
sequence of partial sums is called the sum of the series.
If the series converges, the notation for the series itself

stands also for its sum: lima a .n
n N
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• Arc length. A graph y=f (x) between x=a and x=b has length

A curve C parametrized by ((x(t),

y(t)), a≤t≤b, has length 

• Area of a surface of revolution. The surface generated by
revolving a graph y =f(x) between x=a and x=b about the

x-axis has area If the

generating curve C is parametrized by ((x (t), y(t)),
a≤ t≤b, and is revolved about the x axis, the area is

¹ ¹yds y t x t y t dt2 2 .
a

b

C

2 2= +l l] ] ]g g g##

¹ f x f x dx2 1 .
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a 2+ l] ]g g#

ds x t y d t dt .
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V f x dx1 .
a

b 2= + l ] g#

• Substitution. Refers to the Change of variable formula
(see the Theory section), but often the formula is used in
reverse. For an integral recognized to have the form

(with F and g' continuous), you can put

u=g (x), du=g'(x)dx, and modify the limits of integration

appropriately: 

In effect, the integral is over a path on the u-axis traced out
by the function g. (If g (b) = g (a) [the path returns to its
start], then the integral is zero.) E.g., u=1+x2 yields

Substitution may be used for indefinite integrals.

E.g., 

Some general formulas are:

• Integration by parts. Explicitly,

The common formula is 

For indefinite integration, 

The procedure is used in derivations where the functions
are general, as well as in explicit integrations. You don’t
need to use “u” and “v.” View the integrand as a product
with one factor to be integrated and the other to be
differentiated; the integral is the integrated factor times the
one to be differentiated, minus the integral of the product
of the two new quantities. The factor to be integrated may
be 1 (giving v=x).

E.g., arctan arctanx dx x x
x

x dx
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• Areas of plane regions. Consider a plane region admitting
an axis such that sections perpendicular to the axis vary in
length according to a known function L(p), a≤ p≤ b. The
area of a strip of width ∆p perpendicular to the axis at p is

∆A=L( p)∆p, and the total area is E.g.,

the area of the region bounded by the graphs of f and g

over [a,b] is , provided g (x)≥ f (x) on

[a,b]. Sometimes it is simpler to view a region as bounded
by two graphs “over” the y-axis, in which case the
integration variable is y.

• Volumes of solids.
Consider a solid
admitting an axis such
that cross-sections
perpendicular to the
axis vary in area
according to a known
function A( p), a≤ p≤b.
The volume of a slab of
thickness ∆p perpendicular to the axis at p is ∆V = A( p)∆p,

and the total volume is E.g., a pyramid

having square horizontal cross-sections, with bottom side
length s and height h, has cross-sectional area
A(z)= [s (1– z /h)]2 at height z. Its volume is thus

• Solids of revolution. Consider a solid of revolution
determined by a known radius function r(z), a≤ z≤ b, along
its axis of revolution. The area of the cross-sectional
“disk” at z is A(z)= ππ r(z)2, and the volume is

If the solid lies between two radii r1(z) and r2(z) at each

point z along the axis of revolution, the cross-sections

are “washers,” and the volume is the obvious

difference of volumes like that above. Sometimes

a radial coordinate r, a≤ r≤ b, along an axis

perpendicular to the axis of revolution,

parametrizes the heights h (r) of cylindrical

sections (shells) of the solid parallel to the axis of

revolution. In this case, the area of the shell at r is

A(r)=2ππ r h(r), and the volume of the solid is

¹V A r dr rh r dr2 .
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• Basic indefinite integrals. Each formula gives just one
antiderivative (all others differing by a constant from that
given), and is valid on any open interval where the
integrand is defined:

• Further indefinite integrals. The above conventions hold:

(take positive values for cosh-1)

(Take same sign, + or –, throughout)

• Common definite integrals:

To remember which of 1/2 (1± cos 2θθ) equals cos2θθ or
sin2θθ, recall the value at zero.
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converges for p <1, diverges otherwise.

converges for p > 1, diverges otherwise.

Note: p >1 converges at

x=∞∞, p =0 or <1 diverges at x=∞∞.

E.g., converges to 1 and diverges.

The above integrals are useful in comparisons to
establish convergence (or divergence) and to get bounds.

E.g., converges since the integrand is

bounded by 1/23/2} on [0,1] and is always less than 1/x3/2.
It converges to a number less than

.
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• Unbounded limits. If f is defined on [a,∞∞] and integrable

on [a,B ] for all B> a, then 

provided the limit exists.

E.g., 

Likewise, for appropriate f, 

In each case, if the limit exists, the improper integral
converges, and otherwise it diverges. For f defined on
(– ∞∞, ∞∞) and integrable on every bounded interval,

(the

choice of c being arbitrary), provided each integral on the
right converges.

• Singular integrands. If f is defined on (a,b ] but not at
x = a and is integrable on closed subintervals of (a,b ], then

provided the limit exists. A

similar definition holds if the integrand is defined on

[a,b). E.g., is 

If f is not defined at a finite number of points in an interval
[a,b], and is integrable on closed subintervals of open

intervals between such points, the integral is defined

as a sum of left and right-hand limits of integrals over
appropriate closed subintervals, provided all the limits exist.

E.g., if the

limits on the right were to exist. They don’t, so the integral
diverges.

• Examples & bounds.
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Other routine integration-by-parts integrands are arcsin x,
ln x, xn ln x, x sin x, x cos x, and xeax.

• Rational functions. Every rational function may be
written as a polynomial plus a proper rational function
(degree of numerator less than degree of denominator). A
proper rational function with real coefficients has a partial
fraction decomposition: It can be written as a sum with
each summand being either a constant over a power of a
linear polynomial or a linear polynomial over a power of a
quadratic. A factor (x–c)k in the denominator of the
rational function implies there could be summands

A factor (x2+bx+c)k (the quadratic not having real roots)
in the denominator implies there could be summands

Math software can handle the work, but the following case

should be familiar. If a ≠ b, 

where C, D are seen to be 

Thus 

In general, the indefinite integral of a proper rational function
can be broken down via partial fraction decomposition and
linear substitutions (of form u = ax+b) into the integrals

(handled with

substitution w = u2+1), and (handled with

substitution u = tan t ).
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• Examples. A differential equation (DE) was solved in the
item Solution to initial value problem; an example of that
type is in Motion in one dimension. In those, the expression
for the derivative involved only the independent variable. A
basic DE involving the dependent variable is y' =ky. A
general DE where only the first–order derivative appears
and is linear in the dependent variable is y'+ p(t) y = q(t).
Generally more difficult are equations in which the
independent variable appears in a \hlt{nonlinear} way;
e.g., y'= y2– x. Common in applications are second-order
DEs that are linear in the dependent variable; e.g.,
y'' = –ky, x2y'' + xy'+x2y = 0.

• Solutions. A solution of a DE on an interval is a function
that is differentiable to the order of the DE and satisfies the
equation on the interval. It is a general solution if it
describes virtually all solutions, if not all. A general
solution to an nth order DE generally involves n constants,
each admitting a range of real values. An initial value
problem (IVP) for an nth order DE includes a specification
of the solution’s value and n–1 derivatives at some point.
Generally in applications, an IVP has a unique solution on
some interval containing the initial value point.

• Basic first-order linear DE. The equation y'=ky,

rewritten suggests =kdt where =kt+c. In

this way, one finds a solution y=Cekt. On any open
interval, every solution must have that form, because

y'=ky implies where ye–kt is constant on the

interval. Thus y=Cek t (C real) is the general solution. The
unique solution with y(a)= ya is y=yaek (t–a). The trivial
solution is y≡0, solving any IVP y(a)=0.

• General first-order linear DE. Consider
y'+p(t)y =q(t ). The solution to the associated
homogeneous equation h'+p(t)h=0(dh/h = –p(t)dt)

with h(a)=1 is 

If y is a solution to the original DE, then (y/h)' =q/h,

where The solution with y (a)=ya is

y(t)=Ya+ q u h u du .
a

t 1- -] ]g g; E#
/y h q h.= #

exph t p u du .
a

t
= -] ]g g; E#

dt
d ye ,kt-^ h

yy
dy

dt
dy

ky=

• Taylor polynomials. The nth degree Taylor polynomial of

f at c is Pn(x) = f (c) + f '(c) (x–c) + f ''(c) (x–c)2 +...+

f (n)(c)(x–c)n (provided the derivatives exist). When

c=0, it’s also called a MacLaurin polynomial.
• Taylor’s formula. Assume f has n+1 continuous
derivatives on open interval and that c is a point in the
interval. Then for any x in the interval, f (x)= Pn(x)+Rn(x) ,

where Rn(x) = • (x–c)n+1 for some ξξ

between c and x (ξξ varying with x). The expression for
Rn(x) is called the Lagrange form of the remainder. E.g.,
the remainders for the MacLaurin polynomials of f (x) =

ln(1+x), –1<x<1, are Rn(x) = • xn+1.

There is a ξξ between 0 and x such that ln(1 + x) =

• Error bounds. As x approaches c, the remainder generally
becomes smaller, and a given Taylor polynomial provides a
better approximation of the function value. With the

assumptions and notation above, if is bounded

by M on the interval, then 

≤ for all x in the interval. E.g., for |x|<1,

ex≈1+x+x2/ 2, with error no more than 

because the third derivative of ex is bounded by 3 on (–1,1).
• Big O notation. The statement f (x)=p(x)+O(xm)

(as x→→0 ) means that is bounded near x=0.

(Some authors require that the limit of this ratio as x
approaches 0 exist.) That is, f (x)–p (x) approaches 0 at
essentially the same rate as xm. E.g., Taylor’s formula

implies f (x)=f (0)≠f ' (0)x+ f ''(0)x2+O (x3) if f has

continuous third derivative on an open interval containing
0. E.g., sinx =x+O(x3). [Similar relations can be inferred
from the identities in the item Basic MacLaurin Series.]

• L’Hôpital’s rule. This resolves indeterminate ratios or

If = 0 = and if = 0

= are defined and g(x)≠0, for x near a (but not

necessarily at a), then provided

the latter limit exists, or is infinite. The rule also holds
when the limits of f and g are infinite. Note that f '(a) and
g'(a) are not required to exist. To resolve an indeterminate
difference (∞∞ – ∞∞), try to rewrite it as an indeterminate
ratio and apply L’Hôpital’s rule. To resolve an
indeterminate exponential (00,1∞∞,or ∞∞0), take its logarithm
to get a product and rewrite this as a suitable indeterminate
ratio; apply L’Hôpital’s rule; the exponential of the result
resolves the original indeterminate exponential.
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TAYLOR’S FORMULA

This is also the

average of the left sum and right sum for the given partition.
The approximation remains valid if f is not positive.

• Midpoint rule. This evaluates the Riemann sum on a
regular partition with the sampling given by the midpoints

of each interval: Each

summand is the area of a trapezoid whose top is the
tangent line segment through the midpoint.

• Simpson’s rule. The weighted sum on the

interval [a, b] yields Simpson’s rule

This is also the integral of the
quadratic that interpolates the
function at the three points. For
a regular partition of [a, b] into
an even number n=2m of
intervals, a formula is:

S2m= + +[2i+1]h+ (a+2i•h)+

where h = (b – a)/n. Simpson’s rule is exact on cubics.
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• Integrability & inequalities. A continuous function on a
closed interval is integrable. Integrability on [a,b] implies
integrability on closed subintervals of [a,b]. Assuming f is
integrable, if L≤ f (x)≤M for all x in [a,b], then

Use this to check integral evaluations with rough
overestimates or underestimates.

If f is nonnegative, then is nonnegative.

If f is integrable on [a,b], then so is f, and

• Fundamental theorem of calculus. One part of the
theorem is used to evaluate integrals: If f is continuous on
[a,b], and A is an antiderivative of f on that interval, then

The other part is used to construct antiderivatives:
If f is continuous on [a,b], then the function

is an antiderivative of f on [a,b]:A x f t dt
a

x
=] ]g g#

f x dx A x A b A a .
a

b

a

b

/= -] ] ] ]g g g g#

f x dx f x dx.
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b
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b
#] ]g g# #

f x dx
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b
] g#

L b a f x dx M b a .
a

b
: :# #- -] ] ]g g g#

THEORY

• Heuristics. The definite integral captures the idea of
adding the values of a function over a continuum.

• Riemann sum. A suitably weighted sum of values. A
definite integral is the limiting value of such sums. A
Riemann sum of a function f defined on [a,b] is
determined by a partition, which is a finite division of
[a,b] into subintervals, typically expressed by
a=x0<x1···< xn= b; and a sampling of points, one point
from each subinterval, say ci from [xi–1, xi ]. The associated

Riemann sum is: 

A regular partition has subintervals all the same length,
∆x = (b–a) /n, xi = a+i∆x. A partition’s norm is its
maximum subinterval length. A left sum takes the left
endpoint ci= xi–1 of each subinterval; a right sum, the
right endpoint. An upper sum of a continuous f takes a
point ci in each subinterval where the maximum value of f
is achieved; a lower sum, the minimum value. E.g., the
upper Riemann sum of cosx on [0,3] with a regular
partition of n intervals is the left sum (since the cosine is

decreasing on the interval): 

• Definite integral. The definite integral of f from a to b

may be described as 

The limit is said to exist if some number S (to be called the
integral) satisfies the following: Every εε > 0 admits a δδ
such that all Riemann sums on partitions of [a,b] with
norm less than δδ differ from S by less than εε . If there is
such a value S, the function is said to be integrable and the

value is denoted or . The function must be

bounded to be integrable. The function f is called the
integrand and the points a and b are called the lower limit
and upper limit of integration, respectively. The word

integral refers to the formation of from f and [a,b], as

well as to the resulting value if there is one.
• Antiderivative. An antiderivative of a function f is a
function A whose derivative is f : A' (x)= f (x) for all x in
some domain (usually an interval). Any two antiderivatives
of a function on an interval differ by a constant (a
consequence of the Mean Value Theorem). E.g., both

and are antiderivatives of x–a ,

differing by . The indefinite integral of a function f,

denoted , is an expression for the family of

antiderivatives on a typical (often unspecified)
interval. E.g., (for x < –1, or for x >1). 

The constant C, which may have any real value, is the
constant of integration. (Computer programs, and this
chart, may omit the constant, it being understood by the
knowledgeable user that the given antiderivative is just one
representative of a family.)
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A' (x)= f (x) (valid for one-sided derivatives at the
endpoints).

• Differentiation of integrals. Functions are often defined
as integrals. E.g., the “sine integral function” is

To differentiate such, use the second part of the
fundamental theorem: Si'(x) = sin x /x. A function

such as is a composition involving

To differentiate, use the chain rule

and the fundamental theorem:

• Mean value theorem for integrals. If f and g are
continuous on [a,b], then there is a ξξ in [a,b] such that

In the case g ≡ 1, the average value of f is attained

somewhere on the interval: 

• Change of variable formula. An integrand and limits of
integration can be changed to make an integral easier to
apprehend or evaluate. In effect, the “area” is smoothly
redistributed without changing the integral’s value. If g is
a function with continuous derivative and f is continuous,

then where c,d are

points with g (c)= a and g (d )=b.
In practice, substitute u=g (t); compute du=g'(t)dt; and
find what t is when u=a and u=b. E.g., u=sin t effects the

transformation 

which becomes since 

for The formula is often used in reverse,

starting with See Techniques on pg. 2.

• Natural logarithm. A rigorous definition is ln x =

The change of variable formula with u=1/t

yields = = showing that

ln(1/x) = – ln x. The other elementary properties of the
natural log can likewise be easily derived from this
definition. In this approach, an inverse function is deduced
and is defined to be the natural exponential function.
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MVT for Integrals

Series continued

POWER SERIES

1

• Power series. A power series in x is a sequence of

polynomials in x of the form 

The power series is denoted 

A power series in x–c (or “centered at c” or “about c”) is written

Replacing x with a real number q in a power series yields
a series of real numbers. A power series converges at q if
the resulting series of real numbers converges.

• Interval of convergence. The set of real numbers at which
a power series converges is an interval, called the interval
of convergence, or a point. If the power series is centered
at c, this set is either (i) (–∞∞,∞∞); (ii) (c–R, c+R) for some
R>0, possibly together with one or both endpoints; or (iii)
the point c alone. In case (ii), R is called the radius of
convergence of the power series, which may be ∞∞ and 0
for cases (i) and (iii), respectively. Convergence is absolute
for |x–c|< R. You can often determine a radius of
convergence by solving the inequality that puts the ratio
(or root) test limit less than 1. E.g., for

which, with the ratio test, shows that the radius of
convergence is 2.

• Geometric power series. A power series determines a
function on its interval of convergence:

One says the series converges

to the function. The series i.e., the sequence of

polynomials =1+x+x2+…+xN=

converges for x in the interval (–1,1) to 1/(1–x) and

diverges otherwise. That is, Other

geometric series may be identified through this basic one. 

E.g., for

|x /3|<1. The interval of convergence is (–3,3).
• Calculus of power series. Consider a function given by a
power series centered at c with radius of convergence R:

Such a function is differentiable on (c–R, c+R), and its

derivative there is 

The differentiated series has radius of convergence R, but
may diverge at an endpoint where the original converged.
Such a function is integrable on (c – R, c + R), and its
integral vanishing at c is:
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INTERPRETATIONS
• Area under a curve. If f is nonnegative and continuous on

[a,b], then gives the area between the x-axis

and the graph. The area function gives

the area accumulated up to x. If f is negative, the integral
is the negative of the area.

• Average value. The average value of f over an interval [a,b]

may be defined by average value = 

A rough estimate of an integral may be made by estimating
the average value (by inspecting the graph) and
multiplying it by the length of the interval. (See Mean
Value Theorem (MVT) for integrals, in the Theory section.)

• Accumulated change. The integral of a rate of change of
a quantity over a time interval gives the total change in the
quantity over the time interval. E.g., if v(t)=s'(t) is a
velocity (the rate of change of position), then v(t)∆ t is the
approximate displacement occurring in the time increment
t to t+∆ t ; adding the displacements for all time increments
gives the approximate change in position over the entire
time interval. In the limit of small time increments, one

gets the exact total displacement: s(b)–s(a).

• Integral curve. Imagine that a function f determines a
slope f (x) for each x. Placing line segments with slope
f (x) at points (x, y) for various y, and doing this for various
x, one gets a slope field. An antiderivative of f is a function
whose graph is tangent to the slope field at each point. The
graph of the antiderivative is called an integral curve of
the slope field.

• Solution to initial value problem. The solution to the
differential equation y' =f (x) with initial value y(x0)=y0 is

x y f t dt.
x

x
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CONVERGENCE TESTS
• Basic considerations. For any K, if converges, then

converges, and conversely. If then 

diverges. (Equivalently, if converges, then an→→0). This

says nothing about, e.g., A series of positive terms is

an increasing sequence of partial sums; if the sequence of
partial sums is bounded, the series converges. This is the
foundation of all the following criteria for convergence.

• Integral test & estimate. Assume f is continuous,

positive, and decreasing on (K,∞∞). Then converges

if and only if converges. If the series

converges, then the

right side overestimating the sum with error less than

=1.2018..., the left side

underestimating  the sum with error less than f (N+1).

E.g., ≈ + = 1.2018..., an

underestimate with error <13–3<5•10– 4.

• Absolute convergence. If converges, that is, if

{converges absolutely}, then converges, and

A series converges conditionally if it

converges, but not absolutely.
• Comparison tests. Assume an, bn>0.

- If converges and either an£bn(n≥ N ) or an/ bn
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- If diverges and either bn£an(n≥ N ) or an/bn has

a nonzero limit (or approaches ∞∞), then diverges.
The p-series and geometric series are often used for
comparisons. Try a “limit” comparison when a series
looks like a p-series, but is not directly comparable to it.

E.g., converges since

• Ratio & root tests. Assume an≠ 0.

If then converges

(absolutely). If then

diverges. These tests are derived by comparison with
geometric series. The following are useful in applying the

root test: (any p) and More
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An equation such as means the series converges

and its sum is S. In general statements, may stand for

• Geometric series. A (numerical) geometric series has the

form where r is a real number and a≠0. A key identity

is 1+r+r2+...+rN= It implies

and

that the series diverges if |r|>1. The series diverges if
r=± 1. The convergence and possible sum of any geometric
series can be determined using the preceding formula.

E.g., 

• p-series. For p, a real number, is called the p-series.

The p-series diverges if p≤1 and converges if p>1 (by
comparison with harmonic series and the integral test,

below). The harmonic series diverges, for the partial

sums are unbounded: 

• Alternating series. These are series whose terms alternate
in (nonzero) sign. If the terms of an alternating series
strictly decrease in absolute value and approach a limit of
zero, then the series converges. Moreover, the truncation
error is less than the absolute value of the first omitted

term: (assuming

an→→0 in a strictly decreasing manner).
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The integrated series has radius of convergence R, and may
converge at an endpoint where the original diverged.

E.g., 

The initial (geometric) series converges on (–1,1), and the
integrated series converges on (1,–1). The integration says

for |x|<1; a remainder

argument (see below) implies equality for x =1.
• Taylor and MacLaurin series. The Taylor series
about c of an infinitely differentiable function f is

f (c) + f '(c)(x – c) +

If c =0, it is also called a MacLaurin series. The Taylor
series at x may converge without converging to f (x). It
converges to f (x) if the remainder in Taylor’s formula,

(ξξ between c and x,

ξξ varying with x and n), approaches 0 as n→→∞∞. E.g., the
remainders at x =1 for the MacLaurin polynomials of
ln(1+ x) (in Taylor’s formula above) satisfy

so ln2=

• Computing Taylor series. If R > 0 and

f(x)= then the coefficients are

necessarily the Taylor coefficients: an= f (n)(c) / n!. This
means Taylor series may be found other than by directly
computing coefficients. Differentiating the geometric

series gives 

• Basic MacLaurin series:

=1+x+x2+ ...=

ln(1+x)=x– + – ...=

arctan x=x–

The following hold for all real x:

• Binomial series. For p≠ 0, and for |x|<1,

The binomial coefficients are 

and (“p choose k ”)

If p is a positive integer, =0 for k>p.
k

pe o
!k

p p p p k1 2 1

k

p g
=

- - - +e ^ ^ ^o h h h
p p

2
1

,
-^ h

p

2
=e op,

p

1

=e o1,
p

0

=e o
!

x px
p p

x x1 1
2

1
.

k

p

n

kp 2

0

g+ = + +
-

+ =
3

=

] ^ eg h o/

! ! !
sin x x x x

n
x

3 5 2 1
1 n n

n

3 5 2 1

0

g= - + - =
+

-3 +

= ]] gg/

! ! !
cos x x x x

n
x1

2 4 2
1 n n

n

2 4 2

0

g= - + + - = -3

= ]] gg/

! ! !
e x x x

n
x1

2 3
x

n

n

2 3

0

g= + + + + =
3

=

/

x 1#^ h1
2 1

x x
n

x
3 5

n
n

n

3 5 2 1

0

g=+ - -
+

3 +

=

] g/

x 1<^ h
1
1

2 1
ln

x
x x x x

n
x2

3 5
2

2 1n

n

3 5

0

g= =
-
+

+ + +
+

3 +

=

c m /

n
x x1 1 1n

n

n

1

1

1 #- -
3

+

=

] ]]g gg/x
3

3x
2

2

x 1<^ hxn

n 0

3

=

/
x1

1
-

x 1 .<^ h
1

1
x

nx n x1 n

n n

n
2

1

1 0

= =
-

+
3 3

-

= =] ]g g/ /

a x c x c R ,<n
n

n 0

- -
3

=

] ^g h/

n
1 .

n

n

1

1

-
3 +

=

] g/
1 1 1

R
n n

1 1 1 0,n n 1 "#
p

=
+ + ++

] ] _g g i

!
R x

n
f x c

1
1

n
n n1 1

:p=
+

-+ +] ] _ ]] ]g g i gg g

!
f c

x c
2

.2 g- +
ll] ]g g

!k
f c

x c
k

k

k 0

=-
3

=

] ]] g gg
/

ln x n
x1 1 n

n

n

1

1

+ = -
3

+

=

] ]g g/

x
x x

x
x x

1
1 1

1
1 1implies .2 2g g

+
= - +

+
= - +

Calculus 2.qxd  12/6/07  1:46 PM  Page 1

ISBN-13: 978-142320413-8
ISBN-10: 142320413-1


	Integration
	Definitions
	Interpretations
	Theory
	Integration Formulas
	Techniques
	Improper Integrals

	Applications
	Geometry
	Physics
	Differential Equations

	Approximations
	Taylor's Formula
	Numerical Integration

	Sequences & Series
	Sequences
	Series of Real Numbers
	Convergence Tests
	Power Series




